DESIGN, AUTOMATION & TEST IN EUROPE

19 – 23 March, 2018 · ICC · Dresden · Germany The European Event for Electronic System Design & Test

In-growth Test for Monolithic 3D Integrated SRAM

Pu Pang¹, Yixun Zhang¹, Tianjian Li¹, Sung Kyu Lim², Quan Chen¹, Xiaoyao Liang¹, Li Jiang¹ ¹Department of CS&E, Shanghai Jiao Tong University, ²School of ECE, Georgia Institute of Technology

Advantages of Monolithic 3D Integration

Challenge on Test Method of M3I SRAM Testability Problem Incomplete circuit components and untestable Unable to adding redundant transistors. Unable to repair a fault cell with a redundancy cell Unknown reparability before fabrication finishes

Overview of Proposed Test Methodology

Composing & Testing

- A novel Design-for-Testability method enables the proposed In-growth test on cell-level ack of Efficient Pre-Bond Test Method. & High Overall Fabrication Cost

partitioned incomplete SRAM cells. Early Stop

- A judgement factor & a statistical cost model determine whether to stop the fabrication

Design-for-Testability Method to Make Incomplete SRAM Cells Testable during Fabrication

- nMOS and pMOS transistors are fabricated on the same tier instead of traditionally being splitted into two adjacent tiers.
- Transistors are composed into <u>a temporary</u> <u>SRAM cell</u> with additional <u>metal wires</u> connecting the transistors.
- Before fabricating the top tier, the additional metal wires are etched away.

— Word-line

Bit-line

nMOS Transistors

pMOS Transistors

Experiment Results: The Effectiveness & The Better Performance with More Layers

Applying to multi-tiers Effectiveness of the Sweet Point Accuracy of the model CMOS-based / F=3.0% R: 8 CMOS-based / F=1.5% CMOS-based / F=3.0% CMOS-based / F=3.0% CMOS-based / F=1.5% 2.4 ■ 2-tier ■ 4-tier ■ 6-tier ■ 2-tier ■ 4-tier ■ 6-tier -Statistical Val **SP 50% 100% SP 50% 100%** 1.2 1.4 1.4 tso 2.2 2 2 1.8 ---Simulative Value Cost Cost Cost 1.2 1.2 ost Normalized 1.6 1.4 1.2 1.2 0.8 0.6 Normalized 0.6 0.4 0.2 alized Б aliz **Silem 0.6** 0.4 0.2 0.4 No. 5 Ž 0.2 0.4 30 32 34 22 24 26 28 50 52 54 56 58 60 16 18 20 22 24 26 28 30 18 20 22 24 26 28 30 40 42 44 46 48 10 12 50 52 54 56 58 60 10 12 14 16 Threshold Redundancy Redundancy Redundancy Redundancy Normalized Cost – The cost of the conventional test methodology testing the whole M3I SRAM after the fabrication process finishes. **R** - Redundancy columns of every layer **F** - Fault rate Threshold - A threshold value of the redundancy requirements as judgement factor, derived from the test results of the bottom tier, to judge whether to "early stop".

SP - By building a statistical model of cost, we provide a best threshold setting (denoted as "sweet point", SP), which reaches the minimum overall cost.